Isaac's probability function, v. 6
Pere d'Isaac
30 June, 2023 (at 11:54)

Sampling a probability-density

Given a prob-density $D()$, how do we produce a D random number?

The corresponding CDF (Cumulative Distribution Fnc) is

$$
F(x):=\int_{-\infty}^{x} D \stackrel{\text { specifically }}{=} \int_{(-\infty, x]} D .
$$

So for each $\mathbf{x}_{\mathbf{0}}$ real:

> A D-random point $q \in \mathbb{R}$ has the property that $\quad \mathrm{P}_{D}\left(q \leq \mathbf{x}_{0}\right)$ equals $F\left(\mathbf{x}_{0}\right)$.

Suppose $D>0$ on \mathbb{R}. Then F is continuous and strictly-increasing, mapping $\mathbb{R} \hookrightarrow(0,1)$. Functioninverse F^{-1} maps $(0,1)$ onto \mathbb{R}.

Fix $\mathbf{y}_{\mathbf{0}} \in(0,1)$. Then \mathbf{y}_{0} is the probability -using the uniform-distribution on $(0,1)$ - that a chosen point y in $(0,1)$ satisfies $y \leq \mathrm{y}_{0}$.

With $q:=F^{-1}(y)$ and $\mathbf{x}_{\mathbf{0}}:=F^{-1}\left(\mathbf{y}_{\mathbf{0}}\right)$, note

$$
y \leq \mathbf{y}_{\mathbf{0}} \Longleftrightarrow q \leq \mathbf{x}_{\mathbf{0}}
$$

since F^{-1} is strictly increasing. Hence the probability that $q \leq \mathbf{x}_{\mathbf{0}}$ equals $\mathbf{y o}_{\mathbf{0}} \xlongequal{\text { note }} F\left(\mathbf{x}_{\mathbf{0}}\right)$, as desired in (*).

1a: Algorithm A:. Use the uniform-distribution to pick $y \in(0,1)$, then Return $F^{-1}(y)$.

Possible alternative. Suppose density $D()$ is zero outside of some interval $[\mathrm{L}, \mathrm{H}]$.

If F^{-1} is easy to compute, then use (1a). However, if F^{-1} is difficult [or if the density is zero on intervals inside $[\mathrm{L}, \mathrm{H}]$, so there is no global $\left.F^{-1}\right]$, one can generate a random number directly from D, with the following not-terribly-efficient algorithm.

Let Max here mean the maximum [technically, supremum $]$ of $D(x)$ over all $x \in[\mathrm{~L}, \mathrm{H}]$.

Fix any number $M \geq$ Max.
1b: Algorithm B:. Pick x uniformly in $[\mathrm{L}, \mathrm{H}]$ and y uniformly in $[0, M]$. If $y \leq D(x)$, then
Return x; else go back and pick new x, y.

For this algorithm, our D need not be normalized. E.g, replacing $D()$ by $\frac{1}{3} D()$ would not change the induced prob-measure. [But it would increase the expected number of iterations before an x is returned.]

The expected \# of iterations can be reduced, by lowering M to equal Max.

Technical. A collection \mathfrak{C} of \mathbb{R}-subsets is a σ-algebra if \mathfrak{C} is sealed under complement and countable union. I.e,

$$
\begin{aligned}
B \in \mathfrak{C} & \Longrightarrow \quad[\mathbb{R} \backslash B] \in \mathfrak{C} \quad \text { and } \\
B_{j} \in \mathfrak{C} & \Longrightarrow\left[\bigcup_{j=1}^{\infty} B_{j}\right] \in \mathfrak{C} .
\end{aligned}
$$

The Borel σ-algebra is the smallest σ-algebra owning all the open intervals.

A probability measure on \mathbb{R} assigns a probability $\mathrm{P}(B)$ to each Borel set B. Its CDF (Cumulative Distribution Fnc) is $F(x):=\mathrm{P}((-\infty, x])$.

A probability measure is atomic if $\exists x \in \mathbb{R}$ with $\mathrm{P}(\{x\})$ positive. A probability has a density (PDF) IFF it is non-atomic. Moreover, its density is the derivative of its CDF. [Theorem: A CDF is differentiable "almost everywhere", that is, off of a probability-zero set.]

The Problem. Fix positive reals $\mathrm{L}<\mathrm{H}$ (Low $<$ High $)$ and biases α, β. We seek a single-humped probmeasure on \mathbb{R} which we condition on interval $[\mathrm{L}, \mathrm{H}]$, then emit a random \#. There is a seller who will (grumpily) accept as little as L for his MacGuffin, and a buyer who will pay as much as H ; both values secret.

The biases α, β are the fair-market-opinions of the seller and buyer, respectively, of MacGuffin's value.
[Originally, I misunderstood the biases, thinking that Isaac wanted affine-invariance w.r.t "The Data", $\mathbf{L}, \mathrm{H}, \alpha, \beta$. However, fair-market values relate to $\$ 0$, so only scale-invariance is appropriate. We could force scale-invariance by dividing all the given data by, say, H , and then multiply the resulting random\# by H , but we'll do it directly.]

Interval conditioning. We'll use "The Data" to produce a CDF F and density D, then condition them on interval $[\mathrm{L}, \mathrm{H}]$, producing \widetilde{F} and \widetilde{D}. More precisely, our \widetilde{F} will stretch vertically outside of $[0,1]$, but if we restrict our attention to $[\mathrm{L}, \mathrm{H}]$, then \widetilde{F} is a CDF.

This almost-CDF corresponding to F is

$$
\begin{aligned}
& \widetilde{F}:=\mathcal{A} \circ F, \text { using affine } \mathcal{A}(z):=\frac{z-\ell}{\boldsymbol{m}} \\
& \text { 2a: with } \ell:=F(\mathrm{~L}) \text { and } \boldsymbol{m}:=F(\mathrm{H})-F(\mathrm{~L}) . \text { So } \\
& \widetilde{F}^{-1}:=F^{-1} \circ \mathcal{A}^{-1}, \text { where } \mathcal{A}^{-1}(y):=\ell+\boldsymbol{m} y
\end{aligned}
$$

As \widetilde{F} is a vertically stretched CDF , it can take on values >1 or <0. Nonetheless, Algorithm A applies to \widetilde{F}^{-1}, since the input is a point in $(0,1)$. The actual CDF is $C_{0,1} \circ \widetilde{F}$, using a cutoff function

2b: $\quad C_{\text {Low, } \operatorname{High}}(x):=\operatorname{Min}(\operatorname{Max}(x$, Low $)$, High $)$,
for real numbers Low \leq High.
When F is differentiable, so is \widetilde{F}.

2c: Density \widetilde{D} is derivative \widetilde{F}^{\prime}, restricted to interval $[\mathrm{L}, \mathrm{H}]$.

The only part of \widetilde{D} we would wish to graph is on $[\mathrm{L}, \mathrm{H}]$. Thus we never need to work with $C_{0,1} \circ \widetilde{F}$ [the actual CDF] but only with \widetilde{F}^{-1} and \widetilde{F}^{\prime}.

Tools. The classic sigmoid fnc is

3a:

$$
S(x):=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} \xlongequal{\text { note }} \frac{1}{1+\mathrm{e}^{-x}}, \quad \text { with }
$$

$$
S^{-1}(y)=\log \left(\frac{y}{1-y}\right) \stackrel{\text { note }}{=} \log \left(\frac{1}{1-y}-1\right),
$$

where \log is natural logarithm, $\log _{\mathrm{e}}$. Our S is a strictly-incr map of \mathbb{R} onto $(0,1)$. Under rotation by 180°, its graph is symmetric about the point ($0, \frac{1}{2}$).

For future reference, the sigmoid's derivative is

$$
3 \mathrm{~b}: \quad S^{\prime}(x)=\frac{\mathrm{e}^{x}}{\left[\mathrm{e}^{x}+1\right]^{2}}
$$

The rotational symmetry of $S()$ follows from showing that $S^{\prime}()$ is even. Indeed,

$$
S^{\prime}(-x)=\frac{\mathrm{e}^{-x}}{\left[\mathrm{e}^{-x}+1\right]^{2}} \cdot\left[\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}}\right]^{2}=\frac{\mathrm{e}^{x}}{\left[1+\mathrm{e}^{x}\right]^{2}} \stackrel{\text { note }}{=} S^{\prime}(x) .
$$

Construction. Our CDF will have form $F(x):=S$ (Multiplier $\cdot[x-\tau]$), where translation $\boldsymbol{\tau}$ is the center of density D. [Center τ might be outside of $[\mathrm{L}, \mathrm{H}]$, if the fair-market values mostly agree, and are well outside $[\mathrm{L}, \mathrm{H}]$.] To guarantee that the CDF is scale-invariant, the specific form will be

4a: $\quad F(x):=S\left(\boldsymbol{c} \cdot \frac{x-\boldsymbol{\tau}}{\mathrm{L}+\mathrm{H}}\right)$,
where concentration \boldsymbol{c} is multiplicatively-invariant; multiplying $\mathrm{L}, \mathrm{H}, \alpha, \beta$ by a constant does not change \boldsymbol{c}. Increasing the positive number \boldsymbol{c} will concentrate the probability around center $\boldsymbol{\tau}$.

A mult-invariant number is reliability,
4b: $\quad \rho:=1-\frac{|\beta-\alpha|}{\beta+\alpha}$,
which is close to 1 when the buyer's and seller's fairmarket opinions are relatively close.

Details. Varying with scale are aVerages
4c: $\quad V_{\text {Fair }}:=\frac{\alpha+\beta}{2}$ and $\quad V_{\text {Range }}:=\frac{\mathrm{L}+\mathrm{H}}{2}$,
and weighted-average
$4 \mathrm{~d}: \boldsymbol{\tau}:=V_{\text {Fair }} \cdot \hat{\boldsymbol{\rho}}+V_{\text {Range }} \cdot[1-\hat{\boldsymbol{\rho}}]$, where $\widehat{\boldsymbol{\rho}}$ is some positive, non-decreasing function of $\boldsymbol{\rho}$.
E.g, $\hat{\boldsymbol{\rho}}$ could be $\boldsymbol{\rho}^{3}$.

Concentration \boldsymbol{c} should also be a positive, nondecreasing fnc of $\boldsymbol{\rho}$. [Likely you want $\boldsymbol{c} \geq 1$ always. Isaac, we experimented with something like $c:=[0.2+\rho] \cdot 20$.]

Coding. Reals $M \neq 0$ and T determine an affine map

5: $\mathcal{A}_{T, M}(z):=\frac{z-T}{M}$, with $\mathcal{A}_{T, M}^{-1}(y):=T+M y$.
and (constant) derivative $\mathcal{A}_{T, M}^{\prime}=\frac{1}{M}$.
Decide your formulas for "dials" $\hat{\boldsymbol{\rho}}$ and \boldsymbol{c}. Then:
Program. Define $\boldsymbol{\tau}$ by ($4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}$), then let
6.1: $\quad F:=S \circ \mathcal{A}_{\tau, M} \quad$ where $\quad M:=\frac{\mathrm{L}+\mathrm{H}}{c}$.

Our almost-CDF is now
6.2:

$$
\widetilde{F}:=\mathcal{A}_{\ell, m} \circ F, \quad \text { where }
$$

$$
\boldsymbol{\ell}:=F(\mathrm{~L}) \quad \text { and } \quad \boldsymbol{m}:=F(\mathrm{H})-F(\mathrm{~L}) .
$$

Algorithm A: Pick y uniformly in $(0,1)$. Using S^{-1} from (3a), compute $q:=\mathcal{A}_{\tau, M}^{-1}\left(S^{-1}\left(\mathcal{A}_{\ell, m}^{-1}(y)\right)\right)$. I.e,
6.3:

$$
q:=\boldsymbol{\tau}+M \cdot S^{-1}(\boldsymbol{\ell}+\boldsymbol{m} y)
$$

is your random number.

Graphing. Density \widetilde{D} is the derivative of \widetilde{F}. I.e,
6.4: $\quad \widetilde{D}(x)=\frac{1}{\boldsymbol{m}} \cdot S^{\prime}\left(\frac{x-\boldsymbol{\tau}}{M}\right) \cdot \frac{1}{M}$ on $[\mathrm{L}, \mathrm{H}]$, using S^{\prime} from (3b).

NB. You might be able to avoid overflow ${ }^{91}$ by using formulae $S(x)=\frac{1}{\left[1+\mathrm{e}^{-x}\right]}$ and $S^{\prime}(x)=\frac{\mathrm{e}^{-x}}{\left[\mathrm{e}^{-x}+1\right]^{2}}$.

Alternatively, you can replace S by a sigmoid-like fnc, e.g

7:

$$
\begin{aligned}
\mathfrak{S}(x) & :=\frac{1}{2}+\frac{\arctan (x)}{\boldsymbol{\pi}} . \quad \text { Thus } \\
\mathfrak{S}^{-1}(y) & =\tan \left(\left[y-\frac{1}{2}\right] \cdot \boldsymbol{\pi}\right) \quad \text { and } \\
\mathfrak{S}^{\prime}(x) & =\frac{1}{\boldsymbol{\pi} \cdot\left[1+x^{2}\right]} .
\end{aligned}
$$

[^0]
[^0]: ${ }^{91}$ But you might have underflow. You can guarantee no overflow, by using that S^{\prime} is even, hence $S^{\prime}(x)=\frac{\mathrm{e}^{-|x|}}{\left[\mathrm{e}^{|x|}+1\right]^{2}}$.

