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Sampling a probability-density

Given a prob-density D(), how do we produce a D-
random number?

The corresponding CDF (Cumulative Distribution Fnc)
is

F (x) :=

∫ x

∞
D

specifically
========

∫
( ∞,x]
D .

So for each x0 real:

A D-random point q ∈ R has the property
that PD

(
q ≤ x0

)
equals F (x0).

∗:

Suppose D>0 on R. Then F is continuous and
strictly-increasing, mapping R↪�(0, 1). Function-
inverse F 1 maps (0, 1) onto R.

Fix y0 ∈(0, 1). Then y0 is the probability –using the
uniform-distribution on (0, 1)– that a chosen point y
in (0, 1) satisfies

�� ��y ≤ y0 .

With q := F 1(y) and x0 := F 1(y0), note

y ≤ y0 ⇐⇒ q ≤ x0 ,

since F 1 is strictly increasing. Hence the probability
that q ≤ x0 equals y0

note
=== F (x0), as desired in (∗).

1a: AlgorithmA:. Use the uniform-distribution
to pick y∈(0, 1), then Return F 1(y) . �

Possible alternative. Suppose density D() is zero
outside of some interval [L,H].

If F 1 is easy to compute, then use (1a). However,
if F 1 is difficult [or if the density is zero on intervals in-
side [L,H], so there is no global F 1], one can generate a
random number directly from D, with the following
not-terribly-efficient algorithm.

Let Max here mean the maximum [technically, supre-
mum] of D(x) over all x∈[L,H].

Fix any number M ≥ Max.

1b: AlgorithmB:. Pick x uniformly in [L,H] and
y uniformly in [0,M ]. If y ≤ D(x), then

Return x ; else go back and pick new x, y. �

For this algorithm, our D need not be normalized.
E.g, replacing D() by 1

3D() would not change the in-
duced prob-measure. [But it would increase the expected
number of iterations before an x is returned.]

The expected # of iterations can be reduced, by
lowering M to equal Max.

Technical. A collection C of R-subsets is a σ-algebra
if C is sealed under complement and countable union.
I.e,

B ∈ C =⇒ [RrB] ∈ C and

Bj ∈ C =⇒
[ ∞⋃
j=1

Bj

]
∈ C .

The Borel σ-algebra is the smallest σ-algebra own-
ing all the open intervals.
A probability measure on R assigns a probabil-

ity P(B) to each Borel set B. Its CDF (Cumulative

Distribution Fnc) is F (x) := P
(
( ∞, x]

)
.

A probability measure is atomic if ∃x ∈ R with
P
(
{x}

)
positive. A probability has a density (PDF)

IFF it is non-atomic. Moreover, its density is the
derivative of its CDF. [Theorem: A CDF is differentiable
“almost everywhere”, that is, off of a probability-zero set.] �
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The Problem. Fix positive reals L < H (Low<High)
and biases α, β. We seek a single-humped prob-
measure on R which we condition on interval [L,H],
then emit a random#. There is a seller who will
(grumpily) accept as little as L for his MacGuffin, and
a buyer who will pay as much as H; both values secret.

The biases α, β are the fair-market-opinions of the
seller and buyer , respectively, of MacGuffin’s value.

[Originally, I misunderstood the biases, thinking that Isaac
wanted affine-invariance w.r.t “The Data”, L,H, α, β. How-
ever, fair-market values relate to $0, so only scale-invariance is
appropriate. We could force scale-invariance by dividing all the
given data by, say, H, and then multiply the resulting random#

by H, but we’ll do it directly.]

Interval conditioning. We’ll use “The Data” to
produce a CDF F and densityD, then condition them
on interval [L,H], producing F̃ and D̃. More precisely,
our F̃ will stretch vertically outside of [0, 1], but if we
restrict our attention to [L,H], then F̃ is a CDF.

This almost-CDF corresponding to F is

F̃ := A ◦ F , using affine A(z) :=
z − `
m

with ` := F (L) and m := F (H)− F (L) . So

F̃ 1 := F 1 ◦ A 1, where A 1(y) := ` + my .

2a:

As F̃ is a vertically stretched CDF, it can take on
values >1 or <0. Nonetheless, AlgorithmA applies
to F̃ 1, since the input is a point in (0, 1). The actual
CDF is C0,1 ◦ F̃ , using a cutoff function

CLow,High(x) := Min
(
Max

(
x, Low

)
,High

)
,2b:

for real numbers Low ≤ High.
When F is differentiable, so is F̃ .

Density D̃ is derivative F̃ ′, restricted to in-
terval [L,H].

2c:

The only part of D̃ we would wish to graph is
on [L,H]. Thus we never need to work with C0,1 ◦ F̃
[the actual CDF] but only with F̃ 1 and F̃ ′.

Tools. The classic sigmoid fnc is

S(x) :=
ex

ex + 1
note
===

1

1 + e x
, with

S 1(y) = log
( y

1− y

)
note
=== log

( 1

1− y
− 1

)
,

3a:

where log is natural logarithm, loge. Our S is a
strictly-incr map of R onto (0, 1). Under rotation
by 180◦, its graph is symmetric about the point (((0, 12))).

For future reference, the sigmoid’s derivative is

S′(x) =
ex

[ex + 1]2
.3b:

The rotational symmetry of S() follows from show-
ing that S′() is even. Indeed,

S′( x) =
e x

[e x + 1]2
·
[ex
ex

]2
=

ex

[1 + ex]2
note
=== S′(x).
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Construction. Our CDF will have form
F (x) := S

(
Multiplier · [x− τ ]

)
, where translation τ

is the center of density D. [Center τ might be outside
of [L,H], if the fair-market values mostly agree, and are
well outside [L,H].] To guarantee that the CDF is
scale-invariant, the specific form will be

F (x) := S
(
c · x− τ

L+ H

)
,4a:

where concentration c is multiplicatively-invariant;
multiplying L,H,α,β by a constant does not change c.
Increasing the positive number c will concentrate the
probability around center τ .

A mult-invariant number is reliability,

ρ := 1 −
∣∣β − α

∣∣
β + α

,4b:

which is close to 1 when the buyer’s and seller’s fair-
market opinions are relatively close.

Details. Varying with scale are aVerages

VFair :=
α+ β

2
and VRange :=

L+ H

2
,4c:

and weighted-average

τ := VFair · ρ̂ + VRange · [1− ρ̂], where ρ̂4d:
is some positive, non-decreasing function of ρ.

E.g, ρ̂ could be ρ3.
Concentration c should also be a positive, non-

decreasing fnc of ρ. [Likely you want c≥1 always. Isaac,
we experimented with something like c := [0.2 + ρ] · 20.]

Coding. RealsM 6=0 and T determine an affine map

AT,M (z) :=
z − T
M

, with A 1
T,M (y) := T + My .

and (constant) derivative A′
T,M =

1

M
.

5:

Decide your formulas for “dials” ρ̂ and c. Then:

Program. Define τ by (4b,4c,4d), then let

F := S ◦ Aτ ,M where M :=
L+ H

c
.6.1:

Our almost-CDF is now

F̃ := A`,m ◦ F , where

` := F (L) and m := F (H)− F (L) .
6.2:

AlgorithmA: Pick y uniformly in (0, 1). Using S 1

from (3a), compute q := A 1
τ ,M

(
S 1

(
A 1
`,m(y)

))
. I.e,

q := τ + M ·S 1(`+my
)

6.3:

is your random number. �

Graphing. Density D̃ is the derivative of F̃ . I.e,

D̃(x) =
1

m
· S′
(x − τ

M

)
· 1

M
6.4:

on [L,H], using S′ from (3b). �

NB. You might be able to avoid overflow♥1 by using

formulae S(x) =
1

[1 + e x]
and S′(x) =

e x

[e x + 1]2
.

Alternatively, you can replace S by a sigmoid-like
fnc, e.g

S(x) :=
1

2
+

arctan(x)

π
. Thus

S 1(y) = tan
(
[y − 1

2 ] · π
)

and

S′(x) =
1

π · [1 + x2]
.

7:

♥1But you might have underflow. You can guarantee no over-

flow, by using that S′ is even, hence S′(x) =
e |x|

[e |x| + 1]2
.
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