Pere d'Isaac 30 June, 2023 (at 11:54)

Sampling a probability-density

Given a prob-density D(), how do we produce a D-random number?

The corresponding CDF (Cumulative Distribution Fnc)

 $F(x) := \int_{-\infty}^{x} D \xrightarrow{\text{specifically}} \int_{(-\infty,x]} D.$

So for each $\mathbf{x_0}$ real:

*: A *D*-random point $q \in \mathbb{R}$ has the property that $\mathsf{P}_D(q \leq \mathbf{x_0})$ equals $F(\mathbf{x_0})$.

Suppose D > 0 on \mathbb{R} . Then F is continuous and strictly-increasing, mapping $\mathbb{R} \hookrightarrow (0, 1)$. Function-inverse F^{-1} maps (0, 1) onto \mathbb{R} .

Fix $\mathbf{y_0} \in (0, 1)$. Then $\mathbf{y_0}$ is the probability *-using the uniform-distribution on* (0, 1)- that a chosen point y in (0, 1) satisfies $y \leq \mathbf{y_0}$.

$$\begin{split} \text{With} \ q &\coloneqq F^{\text{-1}}(y) \ \text{and} \ \mathbf{x_0} \coloneqq F^{\text{-1}}(\mathbf{y_0}), \ \text{note} \\ y &\leq \mathbf{y_0} \ \iff \ q \leq \mathbf{x_0} \,, \end{split}$$

since F^{-1} is strictly increasing. Hence the probability that $q \leq \mathbf{x_0}$ equals $\mathbf{y_0} \stackrel{\text{note}}{=} F(\mathbf{x_0})$, as desired in (*).

1a: Algorithm A:. Use the uniform-distribution to pick $y \in (0,1)$, then Return $F^{-1}(y)$.

Possible alternative. Suppose density D() is zero outside of some interval [L, H].

If F^{-1} is easy to compute, then use (1a). However, if F^{-1} is difficult [or if the density is zero on intervals inside [L, H], so there is <u>no</u> global F^{-1}], one can generate a random number directly from D, with the following not-terribly-efficient algorithm.

Let Max here mean the maximum [technically, *supremum*] of D(x) over all $x \in [L, H]$.

Fix any number $M \ge Max$.

1b: Algorithm B:. Pick x uniformly in $[\mathsf{L},\mathsf{H}]$ and y uniformly in [0, M]. If $y \leq D(x)$, then Return x; else go back and pick new x, y. For this algorithm, our D need not be normalized. E.g, replacing D() by $\frac{1}{3}D()$ would not change the induced prob-measure. [But it would increase the expected number of iterations before an x is returned.]

The expected # of iterations can be reduced, by lowering M to equal Max.

Technical. A collection \mathfrak{C} of \mathbb{R} -subsets is a σ -algebra if \mathfrak{C} is sealed under complement and countable union. I.e,

$$B \in \mathfrak{C} \implies [\mathbb{R} \setminus B] \in \mathfrak{C}$$
 and
 $B_j \in \mathfrak{C} \implies \left[\bigcup_{j=1}^{\infty} B_j\right] \in \mathfrak{C}.$

The **Borel** σ -algebra is the smallest σ -algebra owning all the open intervals.

A probability measure on \mathbb{R} assigns a probability $\mathsf{P}(B)$ to each Borel set B. Its CDF (Cumulative Distribution Fnc) is $F(x) := \mathsf{P}((-\infty, x])$.

A probability measure is **atomic** if $\exists x \in \mathbb{R}$ with $\mathsf{P}(\{x\})$ positive. A probability has a **density** (PDF) IFF it is non-atomic. Moreover, its density is the derivative of its CDF. [THEOREM: A CDF is differentiable "almost everywhere", that is, off of a probability-zero set.]

3a:

,

THE PROBLEM. Fix <u>positive</u> reals L < H (Low<High) and biases α, β . We seek a single-humped probmeasure on \mathbb{R} which we condition on interval [L, H], then emit a random #. There is a *seller* who will (grumpily) accept as little as L for his MacGuffin, and a *buyer* who will pay as much as H; both values secret.

The biases α, β are the fair-market-opinions of the *seller* and *buyer*, respectively, of MacGuffin's value.

[Originally, I misunderstood the biases, thinking that Isaac wanted **affine**-invariance w.r.t "*The Data*", L, H, α, β . However, fair-market values relate to \$0, so only scale-invariance is appropriate. We *could* force scale-invariance by dividing all the given data by, say, H, and then multiply the resulting random# by H, but we'll do it directly.]

Interval conditioning. We'll use "The Data" to produce a CDF F and density D, then condition them on interval $[\mathsf{L},\mathsf{H}]$, producing \tilde{F} and \tilde{D} . More precisely, our \tilde{F} will stretch vertically outside of [0, 1], but if we restrict our attention to $[\mathsf{L},\mathsf{H}]$, then \tilde{F} is a CDF.

This *almost*-CDF corresponding to F is

$$\begin{split} \widetilde{F} &:= \mathcal{A} \circ F, \text{ using affine } \mathcal{A}(z) := \frac{z - \ell}{m} \\ \text{2a: with } \boldsymbol{\ell} := F(\mathsf{L}) \quad \text{and } \quad \boldsymbol{m} := F(\mathsf{H}) - F(\mathsf{L}). \text{ So} \\ \widetilde{F}^{-1} := F^{-1} \circ \mathcal{A}^{-1}, \text{ where } \mathcal{A}^{-1}(y) := \boldsymbol{\ell} + \boldsymbol{m}y. \end{split}$$

As \widetilde{F} is a vertically stretched CDF, it can take on values >1 or <0. Nonetheless, ALGORITHM A applies to \widetilde{F}^{-1} , since the input is a point in (0, 1). The <u>actual</u> CDF is $C_{0,1} \circ \widetilde{F}$, using a *cutoff function*

2b:
$$C_{\mathsf{Low},\mathsf{High}}(x) := \operatorname{Min}(\operatorname{Max}(x,\mathsf{Low}),\mathsf{High}),$$

for real numbers $Low \leq High$.

When F is differentiable, so is F.

2c: Density \widetilde{D} is derivative \widetilde{F}' , restricted to interval [L, H].

The only part of \widetilde{D} we would wish to graph is on [L, H]. Thus we *never need* to work with $C_{0,1} \circ \widetilde{F}$ [the actual CDF] but only with \widetilde{F}^{-1} and \widetilde{F}' . Tools. The classic *sigmoid* fnc is

$$S(x) \coloneqq \frac{\mathsf{e}^x}{\mathsf{e}^x + 1} \stackrel{\text{note}}{=} \frac{1}{1 + \mathsf{e}^{-x}}, \quad \text{with}$$
$$S^{-1}(y) = \log\left(\frac{y}{1 - y}\right) \stackrel{\text{note}}{=} \log\left(\frac{1}{1 - y} - 1\right)$$

where log is natural logarithm, \log_{e} . Our S is a strictly-incr map of \mathbb{R} onto (0, 1). Under rotation by 180°, its graph is symmetric about the point $(0, \frac{1}{2})$.

For future reference, the sigmoid's derivative is

Bb:
$$S'(x) = \frac{e^x}{[e^x + 1]^2}$$

The rotational symmetry of S() follows from showing that S'() is even. Indeed,

$$S'(-x) = \frac{e^{-x}}{[e^{-x} + 1]^2} \cdot \left[\frac{e^x}{e^x}\right]^2 = \frac{e^x}{[1 + e^x]^2} \stackrel{\text{note}}{=} S'(x).$$

Construction. Our CDF will have form $F(x) := S(\text{Multiplier} \cdot [x - \tau])$, where *translation* τ is the center of density D. [Center τ might be outside of [L, H], if the fair-market values mostly agree, and are well outside [L, H].] To guarantee that the CDF is scale-invariant, the specific form will be

4a: $F(x) := S\left(\boldsymbol{c} \cdot \frac{\boldsymbol{x} - \boldsymbol{\tau}}{\boldsymbol{L} + \boldsymbol{H}}\right),$

where concentration c is multiplicatively-invariant; multiplying L,H, α , β by a constant does not change c. Increasing the positive number c will concentrate the probability around center τ .

A mult-invariant number is *reliability*,

4b:

$$\boldsymbol{\rho} \coloneqq 1 - \frac{|\boldsymbol{\beta} - \boldsymbol{\alpha}|}{\boldsymbol{\beta} + \boldsymbol{\alpha}},$$

which is close to 1 when the buyer's and seller's fairmarket opinions are relatively close.

Details. Varying with scale are aVerages

4c:
$$V_{\mathsf{Fair}} \coloneqq \frac{\alpha + \beta}{2}$$
 and $V_{\mathsf{Range}} \coloneqq \frac{\mathsf{L} + \mathsf{H}}{2}$,

and weighted-average

4d: $\tau := V_{\mathsf{Fair}} \cdot \hat{\rho} + V_{\mathsf{Range}} \cdot [1 - \hat{\rho}], \quad \text{where } \hat{\rho}$ is some positive, non-decreasing function of ρ .

E.g, $\hat{\rho}$ could be ρ^3 .

Concentration c should also be a positive, nondecreasing fnc of ρ . [Likely you want $c \ge 1$ always. Isaac, we experimented with something like $c := [0.2 + \rho] \cdot 20$.] **Coding.** Reals $M \neq 0$ and T determine an affine map

5:
$$\mathcal{A}_{T,M}(z) := \frac{z-T}{M}$$
, with $\mathcal{A}_{T,M}^{-1}(y) := T + My$.
and (constant) derivative $\mathcal{A}'_{T,M} = \frac{1}{M}$.

Decide your formulas for "dials" $\hat{\rho}$ and c. Then:

Program. Define $\boldsymbol{\tau}$ by (4b,4c,4d), then let

6.1:
$$F := S \circ \mathcal{A}_{\tau,M}$$
 where $M := \frac{\mathsf{L} + \mathsf{H}}{c}$.

Our *almost*-CDF is now

6.2:
$$\widetilde{F} := \mathcal{A}_{\ell, \boldsymbol{m}} \circ F$$
, where
 $\boldsymbol{\ell} := F(\mathsf{L})$ and $\boldsymbol{m} := F(\mathsf{H}) - F(\mathsf{L})$.

Algorithm A: Pick y uniformly in (0, 1). Using S^{-1} from (3a), compute $q := \mathcal{A}_{\tau,M}^{-1} \left(S^{-1}(\mathcal{A}_{\ell,\boldsymbol{m}}^{-1}(y)) \right)$. I.e,

6.3:
$$q \coloneqq \boldsymbol{\tau} + M \cdot S^{-1}(\boldsymbol{\ell} + \boldsymbol{m} \boldsymbol{y})$$

is your random number.

Graphing. Density \widetilde{D} is the derivative of \widetilde{F} . I.e,

5.4:
$$\widetilde{D}(x) = \frac{1}{m} \cdot S'\left(\frac{x-\tau}{M}\right) \cdot \frac{1}{M}$$

on [L, H], using S' from (3b).

NB. You *might* be able to avoid overflow $^{\heartsuit 1}$ by using formulae $S(x) = \frac{1}{[1 + e^{-x}]}$ and $S'(x) = \frac{e^{-x}}{[e^{-x} + 1]^2}$.

Alternatively, you can replace S by a sigmoid-like fnc, e.g $1 = \arctan(x)$

$$\mathfrak{S}(x) := \frac{1}{2} + \frac{1}{\pi} \cdot \operatorname{Thus}$$
7:
$$\mathfrak{S}^{-1}(y) = \operatorname{tan}([y - \frac{1}{2}] \cdot \pi) \quad \text{and}$$

$$\mathfrak{S}'(x) = \frac{1}{\pi \cdot [1 + x^2]}.$$

 $^{\heartsuit 1}$ But you might have underflow. You can *guarantee* no overflow, by using that S' is <u>even</u>, hence $S'(x) = \frac{e^{-|x|}}{|e^{-|x|} + 1|^2}$.